
Ladle1

Jacob Butcher

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California
Berkeley, California 94720

November 11, 1989

Report No. UCB/CSD 89/519

PIPER WORKING PAPER 89-4

ABSTRACT

Ladle is a language for specifying the structure of certain kinds of formal languages. The name
stands for LAnguage Description LanguagE.

A Ladle specification defines two structural aspects of language representation: lexical and
syntactic. (A semantic specification will be added in a future release.) The syntax description
encompasses the abstract syntax of the language, the internal tree representation of this abstract
syntax, and how to parse and unparse such syntax trees.

The Ladle processor transforms a language specification into a set of tables that are used
by the interactive language-based editor Pan I to map between text and abstract syntax trees,
using either bottom-up parsing or structural elaboration. Access to the tables is provided by a
client interface for Ladle.

The report first gives some background information and discusses the functionality of the
Ladle processor at a fairly high level. The theoretical basis for Ladle is described. Subsequent
sections specify Ladle's input format and semantics, its output data and format, and the client
interface to Ladle's output tables.

1 Sponsored by the Defense Advanced Research Projects Agency (DoD), monitored by Space and Naval Warfare

Systems Command under Contract N00039-88-C-0292, and by a gift from Apple Computer Corp.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
11 NOV 1989 2. REPORT TYPE

3. DATES COVERED
 00-00-1989 to 00-00-1989

4. TITLE AND SUBTITLE
Ladle

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Ladle is a language for specifying the structure of certain kinds of formal languages. The name stands for
LAnguage Description LanguagE. A Ladle specification defines two structural aspects of language
representation: lexical and syntactic. (A semantic specification will be added in a future release.) The
syntax description encompasses the abstract syntax of the language, the internal tree representation of this
abstract syntax and how to parse and unparse such syntax trees. The Ladle processor transforms a
language specification into a set of tables that are used by the interactive language-based editor Pan I to
map between text and abstract syntax trees, using either bottom-up parsing or structural elaboration.
Access to the tables is provided by a client interface for Ladle. The report first gives some background
information and discusses the functionality of the Ladle processor at a fairly high level. The theoretical
basis for Ladle is described. Subsequent sections specify Ladle’s input format and semantics, its output
data and format, and the client interface to Ladle’s output tables.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

48

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

0 Introduction

Ladle is a language for specifying the structure of languages. The name stands for LAnguage

Description LanguagE. A Ladle specification defines two structural aspects of language represen

tation: lexical and syntactic. 2 The Ladle processor transforms a language specification into a

set of tables which contain enough information to represent instances of the language as text, as

sequences of lexical objects such as identifiers, integers, etc., or as syntax trees, and to convert

between these representations. The tables also permit direct construction and manipulation of

syntax trees representing language instances. Access to the tables is provided by a client interface

for Ladle.

Section 1 gives some background information and discusses the functionality of the Ladle processor

at a fairly high level. Section 2 contains the theoretical basis for Ladle. Section 3 specifies Ladle's

input format and semantics. Section 4 details Ladle's output data and format. Section 5 describes

the client interface to Ladle's output tables. There are also appendices which contain important

notational conventions, examples, and some auxiliary information. In particular, Appendix A

describes many of the mathematical notations and conventions used throughout the document.

The casual reader may wish to skim Section 2 or skip Sections 4 and 5 entirely.

1 Overview

The core of a Ladle language specification is the description of the syntactic structure of the

language. This description specifies the abstract syntax of the language, the internal tree repre

sentation of this abstract syntax, and how to parse and unparse such syntax trees. While these

aspects are closely tied together, each has a certain amount of flexibility independent of the others.

The remainder of this section elaborates each of these aspects of syntax.

1.1 Abstract Syntax

The abstract syntax of a language is a description of the complete syntactic structure of the language

as it is understood by the language's users. For example, an abstract syntax for a programming

language must contain a structure for each kind of statement and expression in the language, and

must include all of the language's keywords, such as BEGIN and END. Note that this definition

contrasts with some other usages of the term "abstract syntax", where keywords, parentheses, and

other purely syntactic symbols are omitted.

In Ladle, the abstract syntax of a language is defined by an extended context free grammar for

the language, called the abstract grammar. The abstract grammar need not be in any particular

grammatical class such as LL or LALR. It may even be ambiguous. The abstract grammar will

typically contain exactly one rule for each construct in the language, e.g. a declaration list, a

2 A sPma.ntic specification will be added in a future release.

1

conditional statement, an addition expression. However, almost any correct grammar can be used

if the precise derivation of an instance of the language is not of interest. Note that since no

restrictions are placed on abstract grammars, it is unnecessary to transform a desired grammar

into one that will work for Ladle.

In Ladle, the structure of an instance of a language is defined by an abstract grammar derivation

that rewrites the start symbol as that instance. An abstract syntax tree (or just syntax tree)

represents an abstract grammar derivation that rewrites a single non-terminal. A derivation may

rewrite a non-terminal besides the initial symbol of the grammar or may result in a phrasal form

that is not a terminal string. The rhs of such a derivation is not an instance of the language, but

a syntax tree representing that derivation is still valid. Thus a syntax tree does not necessarily

represent an instance of a language, but may represent a structured instance fragment.

1.2 Syntax Tree Internal Representation

A syntax tree represents the structure of a phrasal form of a language as an abstract derivation.

The immediate sub-tree of a node in a syntax tree is the sub-tree consisting of that node and its

children. Conceptually, the correspondence between a syntax tree and a derivation is that each

immediate sub-tree corresponds to the application of one rewrite rule. Thus the internal nodes of a

syntax tree represent abstract non-terminals and the leaves represent abstract terminals and non

terminals. An internal node can also be considered to represent the rewrite rule represented by that

node's immediate sub-tree. (Some leaf nodes can be similarly considered to represent empty rules,

and therefore e as well.) Note that the root of a syntax tree represents the lhs of the derivation

represented by the tree, and the frontier of the tree represents the rhs of the derivation.

The internal representation (IR) of a syntax tree may be more compact than an exact representation

of the syntax tree. An important technique for reducing tree size is to have each internal tree node

designate the rewrite rule represented by the node's immediate sub-tree rather than that rule's

non-terminallhs, since the lhs is easily computed from the rule. (Again, a leaf node may designate

an empty rule.) There are then two methods that can be used to compact an IR tree. One makes

the tree less broad by eliminating terminal leaf nodes and the other makes the tree less deep by

eliminating rule nodes.

An IR tree need not represent every terminal in a rewrite rule's rhs explicitly. The tree node

representing a rule may have child sub-trees representing derivations that rewrite the symbols in

the rhs of the rule. The node must have a child node for each non-terminal symbol in the rhs.

However, terminals may be represented implicitly, so long as the terminal in a particular position

in a given rule is always represented the same way. In a given language, usually a terminal will

always be represented explicitly or always be represented implicitly, but it is possible to specify the

representation on a rule by rule basis. Figure 1 shows the difference between explicit and implicit

terminal representation of the rule (stmt- IF expr THEN stmt).

An IR tree also need not represent every rewrite rule explicitly. A rule can be represented in any

of three ways. Consider the rule (expr- identifier), the possible tree representations of which

are shown in Figure 2. Tree (a) is the strict representation, while trees (b) and (c) are smaller,

2

\
\

§
Explicit Terminals Implicit Terminals

Figure 1: Two m trees for the rule (stmt---+- IF expr THEN stmt).

(a)

(expr ---+- identifier)

(identifier)

(b)

(identifier)

(c)

Figure 2: Three m trees for the single rule derivation (expr---+- identifier).

easier to use representations. Any rule p whose rhs is not empty and contains no more than one

non-terminal need not be represented by a tree node. Instead, p may be represented by the node

corresponding to the non-terminal in rhs(p), or by the node corresponding to a specified explicitly

represented terminal in the rr,s if there is no non-terminal. As a representation of p, this node

may include the rule as an annotation or it may not, depending on the precise IR specified. In

Figure 2, tree (b) includes the annotation, but tree (c) does not. The annotation must be included

when rhs(p) contains multiple symbols. Any number of annotations may be added to a node, in

derivation order. Thus, a rule may be represented by a node, by an annotation on a node, or, if it

is a chain rule, by nothing at all.

1.3 Parsing and Unparsing Syntax Trees

The abstract grammar used to define the syntax trees for a language should be clean and simple.

However, there is no guarantee that it can be parsed easily, or even unambiguously. For this

reason, Ladle language descriptions contain not just the abstract grammar, but a second context

free grammar as well, called the concrete grammar.

The concrete grammar specifies how to convert an abstract phrasal form into an abstract syntax

tree, and vice versa. The former operation is called parsing, and the latter unparsing. The concrete

grammar must be LALR(l). The language specified by the concrete grammar must be the same

one specified by the abstract grammar. In fact, the concrete grammar must be an expansion of the

abstract grammar, a concept defined in Section 2. The parsing and unparsing operations are not

specified explicitly, but are implicit in the relationship between the abstract and concrete grammars.

Typically, the concrete grammar will be similar to the abstract one, but modified to include operator

precedence, to have good error recovery properties, and to be LALR(l). However, the concrete

3

grammar can be any expansion of the abstract grammar, including the abstract grammar itself, if

it is LALR(l).

2 Theory

The relationship between the abstract and concrete grammars in a Ladle language description

specifies how to parse an abstract phrasal form into an abstract derivation, and also how to unparse

an abstract derivation into an abstract phrasal form. This section defines the precise grammar

relationship required, specifies the conversions, and provides algorithms for them. The approach

is to parse with the concrete grammar, converting derivations and symbols between the grammars

as necessary. (This section contains a great deal of notation. The reader may wish to review

Appendix A before continuing.)

2.1 Grammatical Expansion

A context-free grammar 9 may be said to be an expansion of another context-free grammar g with

respect to a mapping ¢ 0 , which maps terminals and non-terminals of 9 onto terminals and non

terminals of g, respectively, and a set Fcyclic of g rules, each of which has no semantic consequence.

With respect to this expansion, the attributes (e.g. symbols, derivations, etc.) of g are referred to

as abstract attributes and the attributes of 9 are concrete; that is, g is the abstract grammar and

9 is the concrete grammar. The conditions that define expansion ensure that the languages of g
and 9 are identical, modulo the renaming of the mapping ¢ 0 • These conditions further ensure that

a concrete derivation can easily be transformed into an abstract derivation, and vice versa. Since

the rules of Fcyclic have no semantic consequence, these rules may be added or removed from an

abstract derivation by such transformations.

Informally, to determine whether a concrete grammar 9 is an expansion of an abstract grammar g
with respect to a mapping ¢ 0 and a set of abstract rules Fcyclic, perform the following steps:

• The domain of the mapping ¢ 0 specifies a set of concrete non-terminals each of which is

equivalent to an abstract non-terminal. Call this set Abase·

• Extend ~se to the set Acyclic by adding those concrete non-terminals that are cycle equiva

lent to non-terminals in Abase· The cycle equivalence of two non-terminals is defined below;

informally, each of the concrete non-terminals derives the other in a cycle using only chain

rules and concrete derivations that correspond to abstract rules in Fcyclic. It is for this reason

that the set Pcyclic must be specified as part of a grammatical expansion.

• Restrict Acyclic to the set A by removing each concrete non-terminal whose only purpose is to

form a cycle, that is, its only rewrite rule is part of the cycle that contains the non-terminal.

• Extend A to the set Achain by adding concrete non-terminals that are chain equivalent to

those in A. The chain equivalence of two non-terminals is defined below, but loosely means

that the non-terminal not in A chain derives or is chain derived by the non-terminal that

4

is in A. Each non-terminal in Acyclic \A is chain-equivalent to some non-terminal in A, so

Acyclic ~ Amain·

• Construct II, the set of concrete derivations each of which rewrites an abstracted concrete non

terminal as an abstracted phrasal form and which rewrites exactly one abstracted concrete

non-terminal (the first). A phrasal form is abstracted when it contains only symbols in

(!:: U Achain), and a concrete non-terminal is abstracted when it is in(!:: U Achain)· II is the set

of concrete derivations that rewrite abstracted concrete phrasal forms as abstracted concrete

sentential forms without rewriting any intermediate abstracted concrete phrasal forms.

9 is an expansion of 9 when the concrete derivations of II correspond precisely to the abstract rules

of 9, except for the concrete derivations that correspond to null abstract derivations.

DEFINITION: Grammatical Expansion

Let 9 = (N, 't, P, S) and 9 = (N, !::, P, S) be the abstract and concrete context-free grammars, re

spectively.
Let Aoase ~ N be a subset of concrete non-terminals.
Let ,Po : (!::UAoase) - (f:u.N) be an invertible mapping such that ,Po(S) = Sand ,P0(Lang(9)) = Lang(Q).
Aoase = ,p-1 (N) is the set of concrete non-terminals that correspond to abstract non-terminals.

The mapping ,Po allows the renaming of symbols between the two grammars.

Each abstract non-terminal derives a set of syntactic constructs for the specified language; each

concrete non-terminal A in Aoase derives the concrete version of the set of constructs derived by the

abstract non-terminal ,Po(A). (This statement is deliberately vague: the purpose of the remainder

of this subsection is to couch the statement precisely.)
Let Pcyclic be any set of abstract rules such that the only effect of applying a rule pin Pcyclic to an

abstract phrasal form is to add some terminal symbols. These rules are cyclic and are chosen to de

scribe syntactic constructs that may have no semantic importance, such as expression parentheses.

More precisely, each rule pin Pcyclic must have the form A - tA(, where A E N and t, (E 't*,
although Pcyclic need not contain all such rules. Removing an application of a cyclic abstract rule

from an abstract derivation always yields another derivation.

5

Example:

9 = (N, f:, P, S), where N = {stmt,expr}, f: ={name, iF, THEN,ELSE, =, +, *• (,)},
the rules of P = {i, 2, 3, 4, 5, 6, 7} are

and S = stmt.

l stmt-

2
3
4 expr-

5 I
6 I
7 I

name= expr

fF expr THEN stmt

IF expr THEN stmt ELSE stmt

(expr)
expr + expr

expr * expr
name

9 = (N,'f-,P,S), where 'f- = {name,IF,THEN,ELSE,=,+,*,(,)},

N = { stmt, assignment, ifstmt, elseclause, sup-expr, expr, term, factor, primary},

the rules in P = {1,2,3,4,5,6, 7,8,9,10,11,12,13,14} are

1 stmt- assignment
2 I ifstmt
3 assignment- name= sup-expr

4 ifstmt - IF sup-expr THEN stmt elseclause

5 elseclause -

and S = stmt.

6 ELSE stmt

7 sup-expr - expr
8 expr - expr + term
9 I term

10 term- term* factor
11 factor
12 factor - primary
13 primary- name
14 I (expr)

Aoose= { stmt, expr}.
VX E (:E U Aoose), 'l/Jo(X) = X.
Pcyclic = {4}.

These grammars will be used as examples throughout the paper.

Two concrete non-terminals are cycle equivalent with respect to the abstract grammar when each

derives the other using a cyclic concrete derivation, and some uniqueness constraints are satis

fied. However, cyclic concrete derivations will not be defined until Section 2.2.1, since the defini

tion depends on the set II, which cannot be defined yet. Therefore, for the moment a concrete

derivation 1r E P* is said to be cyclic when there is an abstract derivation ft E P;yclic such that

6

t/Jo(lhs(1r)) ::t tPo(rhs(1r)). (P* is defined in Appendix A.)

When two concrete non-terminals are cycle equivalent, both of them derive the same set of syntactic

constructs, although there may be slight differences due to cyclic concrete derivations. Further

more, they are characterized by a uniqueness condition on corresponding abstract derivations.

For each concrete non-terminal, Cycled defines the unique concrete non-terminal in Abase which is

cycle equivalent to it, if there is one.

Define Cycled : N -+ (Abase U { .l.}) by

X if X E Aoose
A if 3!A E Aoose, (A::::? a ~ ~oX(o ~ ~o6A(l(o, where

P~Aba•e P~Aba•e
"'X E N, Cycled(X)=

~o,6,(o,(l E ~·and tPo(A) • ~ tPo(~o6A(l(o))
Pcyclic

.l. otherwise.

Acyclic is the set of concrete non-terminals which are cycle equivalent to a non-terminal in Abase

Note that it is not possible for two non-terminals in Abt18e to be cycle equivalent to each other.

Define Acyclic~ N by Acyclic=Cycled-1(Aoo.,e)·

Example:

Cycled({stmt}) = {stmt}.
Cycled({ expr, term, factor, primary})= { expr}.

Cycled({assignment, ifstmt, elseclause, sup-expr}) = { .l.}.
Acyclic= {stmt, expr, term, factor, primary}.

Note that (expr ~ factor+factor), while (term~ (factor+factor)) The derivations differ syntacti

cally only by the presence of the parenthesis in the latter, which results from the cyclic concrete

derivation corresponding to the abstract rule 4.

Two concrete non-terminals X and A can be chain equivalent to each other in two different ways.

First of all, when A is the only concrete phrasal form that can be derived from X without rewriting

a non-terminal in Acyclic after the first rewrite, X and A are chain equivalent. Secondly, for a given

X, if no non-terminal satisfies the first condition and A is the only non-terminal which can derive

a phrasal form containing X without rewriting a non-terminal in Acyclic after the first rewrite and

the only phrasal form so derived is X, then X and A are also chain equivalent.

If X and A are chain equivalent, every terminal string derived from X is also derived from A.

A is the set of concrete non-terminals each of which is cycle equivalent to a non-terminal in Abase

but is not chain equivalent to any non-terminal in Acyclic other than itself.

Define A~ N by

A~ {A E A,ci;, (

(3!p E P such that lhs(p) =A) and) }

..., A.::::? 1 P~ ~ . B, where BE Acyclic and Cycled(B) = Cycled(A) ·
.Acychc

Aoose is not necessarily a subset of A. In fact, S itself may not be in A.

7

Example:

A= {stmt,expr, term, primary}.
The concrete non-terminal factor is not in A because it is chain equivalent to primary.

To illustrate why Abase may not be a subset of A, consider the following modification of the example:

Suppose that Aoose was defined as {stmt,fa.ctor} instead of {stmt,expr}.

Both Acyclic and A would still be the same. (In fact, everything that has been or will be defined

would still be the same, except for Abaae·) However, now Abase C/. A.

Chained and Achain define the set of concrete non-terminals that are chain equivalent to the non

terminals of A.
Define Chained: N-+ (AU {.l}) by

'VX EN,

if X E A
else if(3!a E (:E U A)*,X ~ a) and a= A

P-..4

else if (3!A E A, A::;. a~ ~X(and~,(E (:E u A)*) and~= (= €

otherwise

Chained(X)=X

Chained(X)=A

Chained(X)=A

Chained(X) =.l.

The use of "else" and "3!" in this definition, rather than "or" and "3", ensures that a. concrete

non-terminal is chain equivalent to at most one non-terminal of A.

Define Amain~ N by Achain=Chained-1(A).

Example:

By the first condition,

Chained(stmt) = stmt
Chained(expr) = expr
Chained(term) =term
Chained(primary) = primary.

By the second condition,

Chained(sup-expr) = expr
Chained(factor) =primary.

By the third condition,

Chained(a.ssignment) = stmt
Chained(ifstmt) = stmt.

By the final condition,

Chained(elseclause) = .l.

Achain = { stmt, assignment, ifstmt, sup-expr, expr, term, factor, primary}.

8

Note that A~ Acyclic ~ Achain ~ N, since Acyclic \A contains only concrete non-terminals that are

chain equivalent to non-terminals of A, and therefore Acyclic\A C Achain·

The mapping 7/J extends the renaming mapping 7/Jo using the concrete non-terminal equivalences

just defined.
Define 1/J : (~ U Achain) -+ (t UN) by

VX E (~ U Achain),
{

7/Jo(X)
'lj;(X)= 7/Jo(Cycled(X))

7/Jo(Cycled(Chained(X)))

Note that 7/JAchain(t UN)= 7/Jo o Cycled o Chained.

if X E (~ u Aoose)
if X E (A\Aoose)
if X E (Achain \(AU Aoose)).

The concrete symbols in the set (~ U Achain) are said to be abstracted, as each of them is mapped

onto an abstract symbol. An abstracted concrete phrasal form is one that contains only abstracted

concrete symbols.

Example:

Aoose = { stmt, expr}.

7/J(stmt) = stmt.
7/J(expr) = expr.

A\Aoose = {term, primary}.

7/J(term) = eXp"r.
7/J(primary) = expr.

Achain\(AU Aoose) = {assignment,ifstmt,sup-expr, factor}.

7/J(assignment) = stmt.
7/J(ifstmt) = stmt.
7/J(sup-expr) = expr.
7/J(factor) = expr.

N\Achain = { elseclause}, so 7/J is not defined on the concrete non-terminal elseclause.

II is the set of rightmost concrete derivations that rewrite an abstracted non-terminal as an

abstracted phrasal form without rewriting any other abstracted non-terminals after the first.

IIoose is II without certain chain derivations.
Define

IIoose= { 7r E P P~A h · c atn

Define II=IIoose U { 1r E P P~A I A:::;_ B where A, BE Achain, 1/J(A) = 1/J(B), and 1r is rightmost}.

II and IIoose contain only rightmost derivations so that no two derivations in the same set perform

the same rewrite in different orders.

9

IIbase, and hence II, can be infinite in size. However, the next requirement imposed by grammatical

abstraction will ensure that the derivations of II base and II have a finite number of distinct lhs and

rhs. Further, IIbase and II can be infinite in size only if 9 is ambiguous.

Example:

IIbase = {3,4:5,4:6,8,9,10,11,13,14}.
(The derivation consisting of rule 4 followed by rule 5 is represented by "4:5", since "45" is poten

tially ambiguous.)
Else-clause is the only concrete non-terminal that is not abstracted, so only rules containing

else-clause in their rhs's result in II base derivations of length greater than one.

II = IIbase U {1, 2, 7, 12}.

II* is the set of concrete derivations that both rewrite and yield abstracted concrete phrasal forms.

g is a grammatical expansion of g if and only if both of the following hold:

For every (A - a) E P, there is a unique 1r E II such that A ::! a, '!f(A) = A, and

'!f(a) =a.
For every 1r E II, where A::! a, either '!f(A) ='If(a) or ('!f(A)- 'If(a)} E P.

Or, less precisely, g is a grammatical expansion of g when for each basic concrete derivation from

abstracted non-terminal to abstracted phrasal form there is a unique abstract rule, and vice versa.

I

For the remainder of this section, let g and 9 be context-free grammars such that 9 is an expansion

ofQ.

2.2 Contract and Expand

Any concrete derivation that satisfies certain constraints can be converted into a precisely cor

responding abstract derivation. Any abstract derivation at all can be converted into an almost

precisely corresponding concrete derivation. This concrete derivation satisfies the conversion con

straints on concrete derivations. However, the concrete derivation may contain additional rule

sequences which correspond to cyclic rules not present in the abstract derivation. This section

shows how to obtain these conversions.

2.2.1 II Subsets

There are concrete derivations in II that correspond to null abstract derivations rather than to

abstract rules.

10

DEFINITION: Trivial Concrete Derivations

IItrivial is the set of concrete derivations in II that do not correspond to an abstract rule.

Define IItrivial ~ II by

IItrivial={7r E II I A~ a, where A E Achain, a E (~ U Achain)*, and ¢(A)= ¢(a)}.

For all1r E IItrivial, A~ B, where A, B E Achain and ¢(A)= ¢(B).

Note that while II\IIbase ~ IItrivial, the reverse need not be true.

I

Example:

IItrivial = {1, 2, 7, 9, 11, 12} ~ {1, 2, 7, 12} =II \IIbase•

There are concrete derivations in II corresponding to cyclic abstract rules.

DEFINITION: Cyclic Concrete Derivations

IIcyclic is the set of concrete derivations that correspond to abstract rules in Pcydic.

Define IIcyclic={7r E II I Contract(1r) E Fcydic} ~II.
Note that II cyclic n II trivial = 0.
I

Example:

IIcyclic = {14}.

2.2.2 Contraction

A concrete derivation can be transformed into a corresponding abstract derivation.

DEFINITION: Concrete Derivation Contraction

Define Contract : II --. P U {0 .4IA E N} by

V1r E II, where A * a, {
0.p(A)

Contract(1r)= (¢(A).._. ¢(a))

Extend Contract to Contract: II* P· by

if 7r E IItrivial

otherwise

Contract((A ~ ~B(~ ~/3()) =(¢(A) Con~t(1ro) ¢(~B() Con~t(1rt) ¢(~/3())
and

Contract(0 A)=01P(A)

where (A~ ~B(), (B ~ /3) E II*.

11

Note that if 1r E II* is a concrete derivation such that A J.. a, where A E Achain and a E (~ U Ahain)*,

,P(A) Con~ct(1r) ,P(a).

I

Example:

1r Contract(1r)

1 0-stmt
2 0-st_.mt
3 1

4:5 2
4:6 3

7 0e~r
8 5
9 0e~r
10 6
11 0expr
12 0e-xpr
13 7
14 4

2.2.3 Expansion

Any two concrete non-terminals in A that map onto the same abstract non-terminal A can derive

each other in 9, possibly with some terminals added, using only trivial and cyclic derivations.

This property is needed when transforming an abstract derivation into a corresponding concrete

derivation: an abstract non-terminal in a given context may correspond to one concrete non

terminal as the lhs 9f a concrete sub-derivation and as a different concrete non-terminal as part of

the rhs of a concrete sub-derivation. Thus, the corresponding concrete derivation must include a

trivial/cyclic sub-derivation that rewrites the one concrete non-terminal as the other, possibly with

some terminals added.

DEFINITION: Concrete Non-Terminal Coercion

Let B, C E A such that '¢'(B) = '¢'(C) be given.

Then there is at least one concrete derivation 1r E (IItrivial U IIcydic)* such that B J.. ~C(, where

~, (E ~· and Contract(1r) E P;yc/ic.

Define Coerce(B, C)=7r, where 1r is arbitrarily chosen from among the shortest such derivations.

I

12

Example:

Coerce(B,C)
c

expr term factor primary

expr 0expr 9 9:11 9:11:12

B
term 11:12:14 0term 11 11:12

factor 12:14 12:14:9 0factor 12

primary 14 14:9 14:9:11 0primary_

Note that even though ,P(sup-expr) = ,P(expr), sup-expr rl. A, so Coerce(sup-expr,expr) is unde

fined.

An abstract derivation can be transformed into a corresponding concrete derivation. The resulting

concrete derivation may have more cyclic derivations than the abstract derivation had cyclic rules,

but each rule in the abstract derivation will correspond to a non-trivial and non-cyclic sub-derivation

of the concrete derivation, and vice versa.

An abstract rule can be transformed into a corresponding concrete derivation.

DEFINITION: Abstract Rule Expansion

Define Rule-Expand: P-+ II* as follows:
• • p • • • •

Let p E P be an abstract rule such that A ::? &, where A E N and & E (I:: U N)*.

By the definition of grammatical expansion, there is a unique concrete derivation 1r 1 E II such that

A'~ a', where A' E Achain, a' E (I:: U Achain)*, ,P(A') =A, and ,P(o:') = &.

In fact, 1r'1 E IIbase ~ II.

By the definitions of IIbase and IItrivial, there are rightmost derivations 1r'o, 1r2 E IItrivial• such that

A~ A'~ a' 2 a, where A E A, a E (I:: u A)*, ,P(A) = ,P(A'), and ,P(o:) = ,P(o:').

By the definition of Chained and the unambiguity of 9, 1r 0 and 1r1 are unique.

Set Rule-Expand(p)=1r=(A ~A'~ a' 2 a:}.

Contract(1r) = Contract((A ~ A' ~ a' 2 a}) =

(,P(A) Con~t(1r0) ,P(A') Con~t(1rt) ,P(a') Con~t(1r2) ,P(a)} =
Contract(1r1) = p, since 1r'o,1r'2 E IItriviat·

Note that lhs(1r) E A, rhs(1r) E (I:: U A)*, ,P(lhs(1r)) = A, and ,P(rhs(1r)) = &.

I

Any abstract derivation can be transformed into a corresponding concrete derivation.

DEFINITION: Abstract Derivation Expansion

Let ir E P* be an abstract derivation such that A ::t &, where A E N and & E (i: u N)*.

Then there exist one or more derivations 1r E II* in 9 and ir' = Contract(1r) in Q such that

A:! a and A~&', where A E A, a E (I:: U A)*, &' E (i: U ll)•, ,P(A) = A,&'= ,P(o:), and

ir'\Pcyclic = ir\Fcyclic·

13

Expand(ir) will be defined as the derivation 1r such that 1r is any of the shortest derivations that

satisfies the given conditions.

Expand is constructed inductively on the length n of ir.

Base case (n = 0):
• -1 •

Define Expand(0 A)=0A, where A E (('1/7 n (A X N)) (A)).
If there is more than one such A, Expand(0 A) is non-deterministically defined as each of them.

The claim is trivially true.

Secondary base case (n = 1):
• • p • • • •

Let p E P be an abstract derivation of length 1 such that A => a, where A E N and a E ('E u N).

Set Expand(p)=Rule-Expand(p).
The claim follows from the definition of Rule-Expand.

Inductive case (n > 1):

Let ir E P• be an abstract derivation of length n such that A ::$. a, where A E fr and a E (i: U fr)•.

Let (A::$. a)= (A~ iBb g. i~b}, where i"o E P·, pEP, iJ E fr, and i, 6, ~ E (i: u ir)•.

By the inductive hypothesis, there are derivations 7ro E II* in g and ib = Contract(7ro) in g such

that A~ 1B6 and A !B. i'Bb', where A,B E A, 1,6 E ('E u A)*, i'JJ' E (i: u fr)•, 'I/I(A) =A,

i' Bb' = v)(JB6), and irb\Fc:yclic = iro\Fcyclic·

Define 1r2 E II* by 1r2=Rule-Expand(p).

By the definition of Rule-Expand, C 2 /3, where C E A, /3 E ('E U A)*, '1/1(C) = iJ, and '1/1(/3) = ~-

Define the concrete derivation 1!'1 =Coerce(B, C) E (II trivial U IIcydic)*.

By the definition of Coerce, B!!:} ~C(, where~.(E 'E* and ir1=Contract(1r1) E P;ydic·

Define 7r=(A ~ 1B6!!:} ~~C(6 2 1~/3(6) and a=!~/3(6 E ('E u A)*.

Define i"'=Contract(1r) = Contract((A ~ 1B6!!:} ~~C(6 2 lf./3(6}) =
(A Con~t(1ro) iBb Con~t(1rt) i(B(b Con~t(1r2) i~/J(b) =

(.4 ~ iiJ8 ~ i~iJ(8 ~ i~/3(6).
Define a'=v)(a) = '1/1(1~/3(6) = i~iJ(8 E (i: u N)*.

• ir'
Clearly A :! a and A => a'.

ir''Fcyclic =(A~ iiJ8 ~ i~iJ(8 ~ i~/J(6)'Pcvdic =(A~ iiJ8 ~ i/J8)'Pcyclic = ir\Fcyclic·

Define Expand(ir)=1!'.

This completes the induction, and thus the construction. I

14

2.2.4 Inversion

Contract and Expand are very nearly inverses: Contract is the right inverse of Expand, and is

nearly the left inverse as well. The mapping (Contract o Expand) is virtually an identity mapping;

it may add a few cyclic rules but does not otherwise modify derivations.

THEOREM: Invertibility of Contract and Expand

Let 'fi' E F* be an abstract derivation such that A~ 0:, where A EN and 0: E (tUN)*.

Define the abstract derivation 'fi'' E F* by ft'=Contract(Expand('fi')).

Then A~ 0:', where 0:' E (tUN)* and 'fi''\Fcyclic = 'fi'\Pcyclic·

Let 1r E II* be a concrete derivation such that A ~ a, where A E .A.:hain and a E (:E U .A.:hain)*.

Define the concrete derivation 1r1 E II* by 7r1=Expand(Contract(1r)).
~

Then A'::} a', where A' E A, a' E (:E U A)*, 1/J(A') = 1/J(A), and 1/J(a') = 1/J(a).

If A E A then A' = A, if a E (:E U A)* then a' = a, and if A E A and a E (:E U A)* then Tr
1 = 1r.

If 1r1 = 0 A', then 7r
1 = Expand(0,p(A)) is non-deterministically defined, and Tr'=0 Cycled(Chained(A))

is the only choice for which the preceding claim holds true.
I

2.3 Simplifications

The definition of grammatical abstraction permits a set of concrete non-terminals to be cycle

equivalent in very complicated ways. The members of a concrete non-terminal cycle equivalence

class can relate to each other in arbitrarily complex cycles involving any number of cyclic concrete

derivations.

Example:

To illustrate the sort of strange cycles that may exist, consider adding both the concrete rule

(primary-+ [expr]) and the corresponding abstract rule (expr-+ [exprJ) to the example grammars.

Further add the rule (expr-+ [exprJ) to Fcyclic· Although g is still a grammatical expansion of Q,
these rules adds an extra link in the expr cyclic equivalence set. One consequence of this would be

that Coerce(primary, expr) could be either primary~ [expr] or primary~ (expr).

However, the concept of grammatical expansion can be applied more easily if there is at most one

cyclic concrete derivation for each concrete non-terminal cycle equivalence class. This section adds

this requirement and explores the consequences.

RESTRICTION: At Most One Cyclic Rule For Each Abstract Non-Terminal

With only a single cyclic rule for an abstract non-terminal, there can be only a single cyclic con-

15

crete derivation for the corresponding concrete non-terminal cycle equivalence class. Further, if

this derivation is divided into sub-derivations in IT, all but one of the sub-derivations will be in

ITtrivial· This has implications for the concrete representation of abstract non-terminals and for the

determinism of Coerce.

For all p, q E Pcvclic if lhs(p) = lhs(q), then p = q.

I

Example:

The restriction is true of the given Pcvclic.

Again consider adding both the concrete rule (primary__. [expr]) and the corresponding abstract

rule (eXj>r __. [exprJ} to the example grammars.

Whether or not this new abstract rule is added to Pcvclic, 9 is still a grammatical expansion of Q.
Note that Pcvclic must contain at least one of the abstract rules (prin'lary __. (expr)} and (expr __.[e-xprJ)

for 9 to be a grammatical expansion of Q relative to Pcvclic·

However, because of the restriction, Pcvclic may contain either this new abstract rule or the original

abstract rule (eXj>r __. (expr)}, but not both.

The result of applying Expand to a zero-length abstract derivation may be non-deterministic.

Further, the concrete context in which the expansion occurs may require some property of the

result which is true of some but not all of the possible results.

For example, non-deterministically define the concrete non-terminal A=lhs(Expand(0e-xpr)).

Sometimes it is necessary that A~ term* factor, which is true when A E { expr, term}.

Other times it is necessary that expr ~term* A, which is true when A E {factor, primary}.

As illustrated by this example, it is not possible to produce a single result which will satisfy all

possible contexts. However, it is possible to produce one result that will satisfy all possible contexts

where the non-terminal appears in the lhs of a derivation, as in the first case, and another result

that will satisfy all possible contexts where the non-terminal appears in the rhs of a derivation, as

in the second case.

For each abstract non-terminal A there is a unique concrete non-terminal Top(A) which derives any

concrete non-terminal in A that maps onto A. This top non-terminal may always be used as the

concrete non-terminal corresponding to A when A is the lhs of an abstract derivation. The name

Top is used because the lhs of an abstract derivation is represented by the top of the corresponding

syntax tree.

DEFINITION: Abstract Non-Terminal Top Concrete Representation

Define Atop~ A by

Atop={A. E A\-d7r E ITtriviaz*, B =* .4 where BE A and B :f:. A}.

1/J n (Atop X N) is invertible.
' - - ' -1

Define Top:(~ u N) __. (~ u Atop) by Top=(1/J n ((~ u Atop) x (~UN))) .

16

For all A EN, Top(A) ~ lhs(Expand(0 A.)).
I1tri~ial

I

Example:

Atop = { stmt, expr}.
Top(stmt) = stmt and Top(expr) = expr.

For each abstract non-terminal A there is a unique concrete non-terminal Bottom(A) which can be

derived from any concrete non-terminal in A that maps onto A. This bottom non-terminal may

always be used as the concrete non-terminal corresponding to A when A is in the rhs of an abstract

derivation. The name Bottom is used because the rhs of an abstract derivation is represented by

the bottom or frontier of the corresponding syntax tree.

DEFINITION: Abstract Non-Terminal Bottom Concrete Representation

Define Aoottom ~ A by

Aoottom={A E Al•37r E Iltriviat*, A~ B where BE A and B =/=A}.

1/J n (Aoottom X N) is invertible.
• - • • -1

Define Bottom :(~UN) -t (~ U Aoottom) by Bottom=(1jJ n ((~ U Aoottom) x (~UN))) .

For all A EN, lhs(Expand(0 A.)) ~ Bottom(• .!).
ntrivial

I

Example:

Aoottom = {stmt, primary}.
Bottom(stmt) = stmt and Bottom(expr) = primary.

For any abstract non-terminal A E N, the concrete non-terminal Top(A) (or Bottom(A)) may

always be used for lhs(Expand(0 A.)) when it is known that the concrete non-terminal will be used

in the lhs (or rhs) of a concrete derivation, as is the case for top-down syntactic elaboration (or

bottom-up incremental parsing).

The cyclic rules specified by the restricted Fcyclicdetermine a unique Coerce mapping.

DEFINITION: Concrete Non-Terminal Coercion (Unique)

With the restriction placed on Fcyclic, there is only one Coercemapping.

There is a unique minimal partial order -< on A such that

• - • -1 •
for all A EN, for all B,C E (1/;n (Ax N)) (A), (Coerce(B,C) ~ IItriviat* ¢> C-< B).

17

There is an efficient algorithm to compute Contract o Coerce:

\f B, C E A, where 1/J(B) = 1/J(C),

Contract(Coerce(B, C))= { P E Fcyclic• where lhs(p) = 1/J(B) if C -< B
0.p(B) otherwise.

I

Example:

expr-< term-< factor-< primary.

2.4 Contract and Expand Algorithms

The Contract and Expand mappings convert between abstract and concrete derivations. An ab

stract derivation is represented by an abstract syntax tree. A concrete derivation can be similarly

represented by a concrete syntax tree. Thus algorithms for the Contract and Expand mappings

apply to abstract and concrete syntax trees. A Contract algorithm takes a concrete syntax tree

and produces a corresponding abstract syntax tree, and an Expand algorithm does the reverse.

The basic algorithms for Contract and Expand are identical. The abstract [concrete] syntax tree

is partitioned into a set of sub-trees that represent abstract [concrete] derivations in P [II]. By

the definition of grammatical expansion, each such abstract [concrete] derivation corresponds to a

unique concrete (abstract] derivation in II [P]; a concrete [abstract] sub-tree is constructed to rep

resent this corresponding derivation. The resulting concrete [abstract] sub-trees are then combined

into a single concrete [abstract] tree in the same way that the set of abstract [concrete] sub-trees

formed the original abstract [concrete] tree.

The algorithm just described has five steps:

1. Partition the syntax tree.

2. Determine the derivation represented by each sub-tree.

3. Determine the other grammar derivation corresponding to each represented derivation.

4. Construct a sub-tree for each such corresponding derivation.

5. Combine these sub-trees into a single tree.

The first step is easily done for Expand by dividing the tree into unit sub-trees, and for Contract by

dividing the tree at nodes that represent symbols in Achain· For Expand, the second step is trivial,

since each unit sub-tree designates the rule (or derivation) that the sub-tree represents. The third

step can be handled by a simple table lookup. The fourth step is a straightforward tree operation.

For Contract, the fifth step is also a straightforward tree operation. However, the fifth step for

Expand and the second step for Contract are not so simple.

Syntax trees are combined by appending one tree to another at a leaf of the latter tree, where the

non-terminal R represented by the former tree's root is the same as L, the non-terminal represented

18

by the latter tree's leaf. However, the Expand algorithm needs to combine trees for which Rand L

are not necessarily the same, although they are guaranteed to be cycle equivalent. This problem is

handled by constructing a third syntax tree whose root represents Land whose unique non-terminal

leaf represents R. Such a tree can be constructed by applying steps three and four to the derivation

Contract(Coerce(L, R)), which is efficiently computable using the results of the previous section.

With this third syntax tree interposed between the other two, it is possible to construct a single

syntax tree that combines the two trees.

Determining the II derivation represented by a concrete syntax tree can be done in a bottom-up

manner as follows: For each sub-tree whose leaves are leaves of the whole tree, generate a state

representing the sub-derivations it matches, called the Contract state. The set of Contract states

is IIsub, the (rightmost) sub-derivations of II, defined by

(A* ~B(::! ~f]() E II, where A, B E .Achain, }

~' (, f3 E ('E U .Achain)*, and 1r is rightmost .

Note that II C IIsub, so IIsub contains a unique state for each derivation in II, as well as for each

sub-derivation. Like II, IIsub can be infinite in size, but its derivations have a finite number of

distinct lhs and rhs.

Example:

IIsub = {5,6,1,2,7,12,3,4:5,4:6,8,9,10,11,13,14}.

Note that IIsub\II = {5, 6}, since there are only a couple of derivations in II with length greater

than one.

The Contract state of a tree node representing a rule p does not necessarily depend on the state of

each of the node's children. For example, the state of a child node representing a terminal a E 'E or

a non-terminal A E .Achain is irrelevant, since such a node will always have exactly the same state

(0a or 0A)· Similarly, the state of a child node representing a non-terminal from which only one

derivation in II sub begins is also always the same, by definition. Define N ambig C N by

Nambig={A E N\.Achain l1r, 1r
1 E IIsub, A::! a, A~ a', where a, a' E ('E U .Achain)*, and a=/: a'}.

N ambig is the set of non-abstracted non-terminals such that any node representing a member of this

set has more than one possible state, depending on the states of its child nodes.

Example:

N ambig = {else-clause}, since else-clause is the only concrete non-terminal that is not abstracted,

and it is the lhs of more than one rule.

The Contract state of a tree node representing rule p depends only on the state of child nodes that

correspond to symbols of N ambig in the rhs(p). If there are no such symbols in rhs(p), the node's

state does not depend on the state of its children at all. Conversely, when the rhs(p) does contain

symbols in N ambig, the node's state depends on the state of the corresponding child nodes. Define

Pambig C P by

Pambig={p E pI rhs(p) = ~A(, A E Nambig, and ~' (E ('E u Achain)*}.

19

Pambig is the set of rules such that the state of any node representing a member of this set depends

on the state of some of that node's children.

Example:

Pambig = { 4}, since only concrete rule 4 contains the concrete non-terminal else-clause, which is

the only element of Nambig·

The Contract state for any tree node representing a rule not in Pambig can be computed from

the rule itself. However, even this computation is unnecessary if the node's state will never be

examined. A node's state is examined only when the node represents a non-terminal in Nambig or

the node is the root of a sub-tree representing a derivation in II. In the latter case, the node also

represents a non-terminal in Achain· Thus, Achain U Nambig is the set of non-terminals such that a

state must be computed for any node representing a member of this set.

Each concrete rule p E P is assigned an abstraction action action(p) describing the computation

that must be performed to determine the Contract state for any node representing p.

Define action: P- {none, mark, disambiguate} by

'ip E P,
{

mark if p ~ Pambig and lhs(p) E (Achain U Nambig)

action(p)= disambiguate if p E Pambig

none otherwise.

Mark computes a node's state without examining its children" Disambiguate computes a node's

state by examining the states of at least some of a node's children. None naturally does nothing.

Example:

p action(p)
1 mark (none)
2 mark (none)
3 mark
4 disambiguate
5 mark
6 mark
7 mark (none)
8 mark
9 mark (none)
10 mark
11 mark (none)
12 mark (none)
13 mark
14 mark

Note that some of the mark entries have none in parentheses. Such rules mark derivations in

Iltrivia/, which are typically irrelevant to the construction of an abstract syntax tree.

20

Each concrete rule p also has some data data(p) used in the state computation.

For action(p) = none, data(p)=.L
When action(p) = mark, data(p)=7r E IIsub, where 1r is the unique concrete derivation in IIsub that

begins with p.
If action(p) = disambiguate, data(p) is a set of pairs { ((1rb .•• , 7rn), 1r)}. The first element of each

pair, (1r1, ••• , 7rn), is a tuple of possible Contract states for tree nodes representing theN ambig non

terminals in p's rhs. The second element of each pair, 1r E II,ub, is the state of a node representing

p whose Nambig children have those states 1r1 ... 7rn. data(p) contains all such possible pairs.

Example:

p data(p)
1 1
2 2
3 3
4 { (5, 4: 5), (6, 4: 6)}
5 5
6 6
7 7

8 8
9 9
10 10
11 11
12 12
13 13
14 14

Note that when IIsub is infinite in size, the data mapping as just described maps some rules onto

infinite sets. This problem can be eliminated by arbitrarily choosing II sub' ~ IIsub such that for each

derivation 1r E II sub there is a unique representative derivation 1r 1 E IIsub' such that lhs(1r) = lhs(1r 1
)

and rhs(1r) = rhs(1r'). Since the derivations of IIsub have a finite number of distinct lhs and

rhs, there is at least one such finite IIsub'· The definition of the data mapping is then modified

by substituting each Contract state 7r 1 E IIsub' for all of the Contract states 1r E IIsub' that it

represents. This modification yields a data mapping that does not map any rule onto an infinite

set.

Given a concrete syntax tree repesenting a derivation in II, the action and data mappings can be

used to determine the abstract rule or null derivation to which the concrete derivation corresponds.

First a Contract state is computed for the root of the tree, bottom-up. The operation at a tree

node representing the rule p is simple:

If action(p) is none, no Contract state need be computed.

If action(p) is mark, the Contract state for the rule is data(p).
If action(p) is disambiguate, the Contract state is determined by matching the Contract

states of the node's children to those in the state tuples in the pairs of data(p).

Once the Contract state for the tree's root has been computed, the corresponding abstract rule or

21

null derivation can be looked up in a table. In no case is any tree node examined more than once,

and often whole portions of the tree are not examined at all.

3 Input

A Ladle input specification provides the following four things for a language:

a set of textual expressions for the lexemes

an abstract extended context-free grammar for the language

an internal representation for syntax trees of the language

an LALR(l) concrete extended context-free grammar for the language

Every Ladle description has the form:

"LANGUAGE" (identifier)
"LEXICAL"

(lexical-definition)*
"ABSTRACT"

(abstract-definition)*
"CONCRETE"

(concrete-definition)*

The identifier names the language. Each set of definitions describes the appropriate feature of

the language. The abstract section defines both the abstract syntax and the syntax tree IR. The

concrete section may be omitted. Appendix B gives both an example and a description of a Ladle

description.

A Ladle identifier must begin with an alphabetic character, and may contain any number of

alphabetic, numeric, or underscore ("-") characters. Integers are decimal and unsigned. The

keywords of Ladle are case insensitive. N ewlines, tabs, and formfeeds bewteen Ladle tokens are

whites pace.

A Ladle description may contain comments anywhere that whitespace is legal. A Ladle comment

consists of any amount of text between "/*" and "*I". Comments may be nested.

The Ladle processor requires that the concrete grammar be a grammatical expansion of the abstract

grammar. In addition, it imposes the following requirement on a language specification:

For all1r, 1!"
1 E IIcyclic such that A:! a and B ~ ;3,

where .4, B E Achain and a, f] E p:::: U Achain),

if 7/l(A.) = 1/l(B) then
A.= Band there is aCE Achain such that a,f] E :E*{C}:E*.

It is an error for Ladle input not to satisfy this condition. Typical Ladle descriptions satisfy

the requirement anyway, so it is not an issue in practice. The requirement simplifies the theory

somewhat, as discussed in Section 2.3.

22

3.1 The Lexical Section

The lexical section of the language specification defines the lexemes for the language. The lexemes

are the terminals for both the abstract and concrete grammars, plus lexical constructs such as

whitespace and comments that are not grammar terminals. A single set of terminals is used for

both the abstract and concrete grammars, so :E = i: and 1/Jo n (:E X i:) = lt· A lexical-definition

has the form:

(identifier) "=" (lex-expression) "=>" (lex-statt£S) ";"

The identifier names the lexeme. Each lexeme must have a unique name.

The lex-expression is an extended regular expression describing the set of strings that are instances

of the lexeme. The Ladle processor combines all of these expressions into an automaton that scans

text a character at a time until the longest possible lexeme has been recognized. This automaton

looks only one character ahead, and never backs up. If one lexeme is a prefix of another, the

automaton will optimistically expect the longer lexeme if the lookahead character is appropriate.

When the portion of text that is currently being scanned doesn't match any lexeme, a special error

lexeme is recognized.

The basic elements of a lexical expression are strings, case insensitive strings, and character sets.

A string is one or more characters delimited by """s. A case insensitive string is the same, but

delimited by ", "; an alphabetic character in the string matches either case of the character. The

word string is normally used to refer to both regular and case insensitive strings. A character set

is one or more characters delimited by "{" and "}", and represents the set of characters specified.

The "-" character in a character set indicates a range of characters; e.g., "{a-zA-Z}" is the set

of alphabetic characters. The "\" character is a quoting character in strings and character sets,

interpreted as follows:

"\\" backs lash

"\-" hyphen

"\n" newline

"\ t" tab

"\d" delete

"\b" backspace

"\e" escape

"\A JC' control-X

"\n" ascii n, octal

No other quoting convention is supported; in particular "\X'' is illegal in the general case. It is

also illegal to use "\" anywhere else, for example, in an identifier.

The basic lexical operators, in order of precedence from highest to lowest, are:

(expr) *
(expr) +
(expr) (expr)
(expr) I (expr)

23

at least 0 repetitions of expr

at least 1 repetition of expr

concatenation
alternation

-

[(expr}]
((expr})

optional
grouping

There are also some extended lexical operators whose use is more restricted. They are:

(expr} - (string}
(string} "' (string}
(string} IN (identifier}

string match
balanced string match
keyword

The string operands of the match operators "-" and ""'" must not be case insensitive strings. Both

of these operators match strings that begin with the left operand and end with the right operand.

The balanced version only matches strings with balanced occurrences of the left and right operands.

The match operators must not be nested within either of the repetition operators. Also, if a match

operator appears in an operand of the concatenation operator, it must be in the final operand.

The keyword operator "IN" is useful for defining special instances of other lexical patterns that

are to be treated as distinct lexemes. The right operand must be the name of a previously defined

lexeme. The left operand may be any string that matches the expression for this previously defined

lexeme. The keyword operator may only be nested within the alternation or grouping operators.

Appendix B includes examples of each of these specialized operators.

Any lexeme whose expression operators are all keyword, concatenation, or grouping operators is a

constant lexeme. Such a lexeme matches only a single string, although parts of this string may be

case insensitive.

Not alllexemes are terminal symbols for the language's grammars, nor are alllexemes included in

the IR tree. The status of a le..xeme is described by its lex-status, which must be one of

IGNORE

SCREEN

OMIT

PRESERVE

or may be left out, along with the"=>" preceding it. An ignored lexeme is not a grammar terminal,

. nor is it ever in an IR tree. A screened lexeme is also not a grammar terminal, but it should be

included in IR trees as an annotation of some sort. Omitted and preserved lexemes are grammar

terminals, and may or may not be found in IR trees. A preserved lexeme is by default represented

explicitly, while an omitted one is by default represented implicitly. In either case, the default can

be overridden for a particular instance of the lexeme in the abstract grammar. A warning is issued

when a non-constant lexeme is omitted. If no lexeme status is given, the default status assumed

is OMIT for constant lexemes, PRESERVE for all others. Appendix B includes examples of lexeme

status. Typically status IGNORE is used for whitespace, SCREEN for comment lexemes, OMIT for

constant lexemes such as keywords, and PRESERVE for non-constant lexemes, such as identifiers.

Outside of the lexical section, a lexeme may be referenced by its name, or by a string. In the latter

case, if there is not already a lexeme defined as that string, a new lexeme is so defined with lexical

status OMIT. The abstract and concrete sections must refer only to the terminallexemes, which

are the lexemes that are neither ignored nor screened.

24

3.2 Extended Grammar Notation

Each of the abstract and concrete sections of the language description contains an extended context

free grammar. Such a grammar consists of a set of non-terminals each of which has some rewrite

rules. The rhs of a rewrite rule may be any of these forms: 3

symbols
[symbols]
symbols*
symbols * lexeme
symbols+
symbols + lexeme
symbols++
symbols + + lexeme

conventional rhs
optional
at least 0 repetitions of symbols
the same, but repetitions separated by lexeme

at least 1 repetition of symbols
the same, but repetitions separated by lexeme

at least 2 repetitions of symbols

the same, but repetitions separated by lexeme

Symbols is any non-empty sequence of grammar symbols, although in a conventional rhs it may be

empty. The optional operator is really just a short hand notation: the rule A-+ [a] represents the

rules A -+ a and A-+ f. Any rule containing one of the repetition operators is called a sequence

rule. The lexeme separating successive repetitions is called a delimiter. A warning is issued when

a delimiter is not a constant lexeme.

The"++" sequence operator is not standard usage, although the other extended grammar operators

are. The Ladle description of Ladle in Appendix B contains an example of its use to describe

lexical concatenation. The concatenation of several lexical expressions is properly represented as a

sequence. However, a single expression should not be represented as a sequence of one expression,

but simply as the expression itself. The "++" operator makes this distinction possible.

Neither grammar expansion nor LALR(k) are defined on extended grammars, but both definitions

can be generalized. Appendix C describes how to normalize an extended grammar into a conven

tional one. Similarly, with respect to a given 1/Jo and Pcyclic• an extended grammar g is said to

be an expansion of another extended grammar 9 if and only if the the normalization of g is an

expansion of the normalization of 9. In practical terms, this means that the sequence rules of

the two grammars must correspond in the same way as other rules, with the sequence operators

considered lexemes. An extended grammar g is LALR(k) if and only if the normalization of g is

LALR(k).

3.3 The Abstract Section

The abstract section of the language specification describes both the language's abstract syntax

and the internal representation of syntax trees of the language. The abstract syntax is described

as a possibly ambiguous context-free grammar 9. Each of the definitions in the abstract section

defines a non-terminal of N. An abstract-definition has the form:

3 In the current implementation of Ladle, a non-terminal which has an optional or sequence rule may only have

a single rule. This was a poor design choice, as Ladle itself is best described by violating this restriction, as in

Appendix B.

25

(identifier} "=" (abstract-role-seq) ";"

The identifier names the non-terminal. Each non-terminal must have a unique name, which must

not be the name of any lexeme. The :first abstract non-terminal defined is the start symbol S for

the abstract grammar.

An abstract-role-seq is a sequence of abstract rules, separated by "l"s, and containing at least one

rule. Each abstract rule follows this format:

(rhs) "=>" (IR-tree-template)

A rhs is any legal rhs as described in Section 3.2. Note that only abstract non-terminals and the

terminallexemes are legal grammar symbols in an abstract rhs.

An IR-tree-template describes how to represent as a tree the syntax defined by an abstract rule. An

IR template must provide three pieces of internal tree representation information. First, it must

specify whether the abstract rule is represented in the tree by a node, by an annotation, or not at

all. Second, if the rule is represented by a node, the template can specify which of the symbols

in the rhs of the rule are to have their sub-tree representations be children of this node. Finally,

the template may specify the order in which these children should be represented. Each IR tree

template should match one of

1. "IMPLICIT"

2. "ANNOTATE" (child-spec)

3. "ANNOTATE"

4. (identifier) "(" (child~spec-list) ")"

5. (identifier)

6. "TREE"

or may be left out, along with the preceding "= >". If no template is specified, a default is assigned.

Recall that some terminallexemes are specified as preserved in the lexical section. All non-terminals

are by definition preserved. The set of preserved grammar symbols is information required by many

of the tree templates.

A child-spec-list is simply a sequence of child-specs separated by ","s. This sequence may be empty.

A child-spec is a grammar symbol, optionally followed by an integer in angle brackets("<", ">").

Each child-spec must refer to a grammar symbol in the rhs preceding it. A child-spec-list must refer

to all of the non-terminals in the rhs and each grammar symbol in the rhs may be referred to at

most once. The child-spec-list may order the grammar symbols arbitrarily, however. The bracketed

integer should be included after symbols that occur multiple times in the rhs; a 1 refers to the first

occurrence, and so forth. A warning is issued if an omitted lexeme is part of the child-spec-list, or

if a preserved non-constant lexeme is part of the rhs but is not in the child-spec-list.

Each rule with tree template 1 must have exactly one grammar symbol in its rhs, and must not

be a sequence rule. The rule is not represented explicitly in the tree. Its place is held by the node

representing the unique symbol in its rhs.

26

A rule that uses template 2 is represented as an annotation in the node representing the symbol

referred to by the child-spec argument. The child-specs in these templates must be single element

child-spec-lists; warnings will be issued accordingly. A rule using template 3 must have exactly one

symbol in its rhs that is preserved, or have only one symbol in its rhs at all. This template is

equivalent to template 2 with that unique symbol as the argument.

Tree template 4 is the most general. It specifies that the rule containing the template is represented

by a tree node, that the identifier is the name for the rule and node, and that the children of the node

are the sub-trees representing the grammar symbols in the child-spec-list, in the order specified.

Template 5 is equivalent to the general template with the identifier as the node name argument

and the preserved symbols of the preceding rhs in the order they appear in the rhs as the child list

argument. The name of a node as specified by either of these templates must be unique, and must

not be the name of a lexeme or an abstract non-terminal. An abstract non-terminal definition with

only one rule may use template 6. This template is equivalent to template 5 with the name of the

non-terminal as its node name argument.

If no tree template is specified for a rule, a default template is assigned as follows: If the rule's rhs

is exactly one symbol, the default is template 1. If the rule's rhs contains more than one preserved

symbol, the default is template 5. The name used for the template is "NT-n", where the rule is

the nth rule for non-terminal NT. Otherwise, the default is template 3. A warning is issued for the

latter two kinds of default templates.

Each sequence rule must be represented by an actual tree node. Exactly one symbol in each

sequence rule must have its corresponding sub-tree specified as a child of the rule's node. This is

so that the sequence as a whole can be represented as a single node that has as its children exactly

one node for each element of the sequence. Note that a sequence rule may have no more than one

non-terminal in its rhs as a consequence. Further, no sequence delimiter may ever be explicitly

represented in an IR tree.

The rule A- [a] is shorthand for the two rules A- a and A- €. TheIR tree template specified

for A- [a] is assigned to rule A- a. Rule A- € is given a special tree template that represents it

by a distinct node for the rule. This node has the name "EMPTY", and naturally has no children.

Ladle defines the cyclic rules Pcuclic as the set of all abstract rules whose rhs is the rule's lhs plus

one or more lexemes and whose IR template is ANNOTATE or IMPLICIT, with the only first rule for

a given non-terminal included when there is more than one such rule. For most languages, there is

at most one such rule for each abstract non-terminal.

3.4 The Concrete Section

The concrete section specifies an LALR parser for conversion of lexical streams to concrete deriva

tions that can in turn be Contracted to form abstract derivations. This parser is specified by an

extended LALR(l) context-free grammar g that must be an expansion of the abstract grammar Q.
The definition of expansion places such strong constraints on the two grammars that the concrete

grammar is usually very similar to the abstract grammar. Therefore, Ladle requires each abstract

27

non-terminal to have the same name as the concrete non-terminal to which it corresponds, that is,

Aoo,e = N and ,Po n (Aoo,e X N) = lN. Thus, g must be an expansion of the abstract grammar

g relative to the set of cyclic abstract rules Pc1Jclic specified in the abstract section and the map

ping ,Po= l(f:uN)" Further, since the grammars are usually so similar, the concrete section of the

language specification need not specify grammar rules for any non-terminal in Abase whose rules

in g correspond exactly to its rules in g. All non-terminals in Aba,e are assumed by the Ladle

processor to have concrete rules that correspond to the non-terminal's abstract rules. The concrete

section must contain a set of rules for each non-terminal in N\Aoose· The concrete section should

also contain an explicit set of rules for non-terminals in Aoo,e whose concrete rules do not exactly

correspond to their abstract rules. Rule specifications of this latter kind override the default set of

rules constructed from the abstract grammar. The concrete section consists of a set of definitions,

each of which specifies the rules for one concrete non-terminal.

A concrete-definition has the form:

(identifier) "=" (concrete-role-seq) ";"

The identifier names the non-terminal, and must not be the name of a lexeme. A non-terminal may

be defined at most once in the concrete section. The concrete-role-seq is a sequence of concrete

rules, separated by "l"s, and containing at least one rule. Each such rule must be a legal rhs

as described in Section 3.2. The set of legal grammar symbols for a concrete rhs consists of the

terminallexemes and any non-terminal defined in either the abstract or concrete sections.

4 Output

The Ladle processor outputs the data needed to convert between text and syntax trees, and to

manipulate syntax trees directly, for a specified language. This section describes that data at a

fairly high level. The details of the representation can be found in the implementation. The various

symbols, rules, states, and so forth are all represented in the output by integers. The data should

only be accessed indirectly, using the interface specified in Section 5.

The output includes the name of the language.

4.1 Lexical Data

A lexical automaton is output. This automaton is an encoding of all the lexemes' extended reg

ular expressions. It can be used to extract the lexemes from a text stream. This description is

intentionally left vague, as it is very implementation dependent.

For each lexeme, its text, whether it is ignored, screened, or parsed, and its size are output. The

text of a constant lexeme is its expression string. For a case insensitive string, the cases of the

characters in the te..xt are those given in the string's original specification. The text of a non

constant lexeme is its name. The size of a constant lexeme is the length of its string. Non-constant

lexemes are assigned a size of 0.

28

4.2 Abstract Syntax Tree Data

For each abstract non-terminal A E N, its name, size, and the set of abstract rules lhs -l ({A}) are

output. The size is the number of characters in its name.

For each abstract rule p, its name, arity, kind, lhs, rhs length, rhs, delimiter, and theIR permutation

of its rhs are output. The rhs of a sequence rule is considered to be only the left operand of the

sequence operator; the operator and the delimiter are not included. Special values are used for the

delimiter of non-delimited sequence rules and non-sequence rules.

The name and arity of each abstract rule are both determined by the IR tree template associated

with it. Some of the grammar symbols in the rhs of each abstract rule are part of the template

associated with the rule. The arity of the rule is the number of such symbols in its rhs; All

sequence rules are thus assigned an arity of one. The name of an IMPLICIT or ANNOTATE rule is

"IMPLICIT" or "ANNOTATE", respectively. The € rules specified by the optional notation are

named "EMPTY''. Every other abstract rule is named by the IR tree template associated with it.

The kind of each abstract rule is one of the following:

implicit
annotate
normal
star
plus
plural

All rules with IMPLICIT or ANNOTATE IR tree templates are implicit or annotate rules, respec

tively. The kind of a sequence rule with operator "*", "+", or "++" is star, plus, or plural,

respectively. All other abstract rules are of kind normal. Sequence rules are always represented

by e..xplicit tree nodes, so an IMPLICIT or ANNOTATE sequence rule is impossible.

The IR permutation of the rhs of each abstract rule relates the order of the symbols in the rule's

rhs to the order of the child specifications in the IR tree template associated with the rule. For

each child specification in the rule's template the rule's IR permutation gives the rhs index of the

specified grammar symbol.

The Expand Top, and Bottom mappings are output.

4.3 Parsing and Unparsing Data

Theoretically, a lexical stream can be converted to a syntax tree by parsing and contracting. A

concrete derivation is constructed from a lexical stream by an LALR parser. Applying Contract to

the concrete derivation yields an abstract derivation, which is then represented by a syntax tree.

Unfortunately, neither LALR parsing nor the Contract algorithm given in Section 2.4 are defined on

extended grammars. To handle these problems, a non-extended LALR parse grammar P such that

29

Lang(P) = Lang(9) is constructed, and the Contract algorithm is adjusted to apply to derivations

of Prather than 9.

The context-free parse grammar P=(N•, !:, p•, S) is a normalization of the concrete grammar 9.

p• is created from P by normalizing all sequence rules. N • is N plus whatever extra non-terminals

are required for the normalized rules. !: and S are the same as in 9. For each normal transformation,

let A E N, a E (!: U N•)* such that Ia I =/: O, and dE !: U { t-} be given. For each sequence rule, let

a distinct X ft. N be given. The transformations are

A-t€ (abstract)

A-x
becomes x-a (abstract)

X-tXda (enqueue)
X-tXdX (append)

A-t X

A-a+d becomes x-a (abstract)
x-xda (enqueue)
X-tXdX (append)

A-t X

A-t a++d becomes X -t ada· (plural)
X-Xda (plural)

X-XdX (plural).

The symbol X defined by each application of a transformation is an element of N •. X is not a

distinct symbol from X, but is a specification needed for LALR automaton generation, since the

parse grammar may be ambiguous. These transformations are the same as those in Appendix C

except for the addition of the rules containing X, which are explained in the next section. The

parenthesized keywords after some of the transformation rules are used by the adjusted Contract

algorithm described shortly.

Using the normalization given in Appendix B on g and 9 yields the context-free grammars Q'

and 9' such that 9' is LALR(k) and an expansion of Q'. Unfortunately, applying Contract to a

derivation of 9' may result in a derivation of Q' that is different from the appropriate derivation

of Q. For example, a g derivation tree represents each sequence with a single rule node whose

children are the sequence elements, while a Q' derivation tree represents the same sequence with a

left-recursive binary tree whose leaves are the sequence elements. However, the sequence of leaves

in any binary tree can be constructed bottom-up as follows:

For each left leaf node, create the sequence containing the leaf: abstract.

For each internal node whose right child is a leaf node, add the right child leaf to the

sequence representing the left child sub-tree's leaves: enqueue.

For each internal node whose right child is another internal node, append the sequences

representing the left and right child sub-trees' leaves: append.

Using this method, the Contract algorithm can be extended to convert binary trees to sequences.

Let the action' and data' mappings for Q' and 9' be given. Note that the rules of P are a superset

30

of the rules of Q 1•

Define action• : p• -+ {none, mark, abstract, disambiguate, enqueue, append, plural} by

Vp E p•,

abstract if p was defined as abstract

enqueue if p was defined as enqueue

append if p was defined as append

action•(p)= plural if p was defined as plural

abstract if data(p) E II and Contract(data(p)) E P
none if data (p) E II and Contract(data (p)) ~ P
action'(p) otherwise

where "defined as" refers to the keyword to the right of the rule as it was defined in the normal

transformations. For "++" sequences there is no abstract operation, and the plural operation

performs either enqueue or append as appropriate. Note that the abstract operation sometimes

takes the place of a mark operation. This facilitates splitting a concrete derivation tree into sub

trees which represent derivations in II. Define the data• mapping for P from data' by substituting

the original abstract sequence rule for each abstract rule produced by normalizing, wherever such

rules appear.

Under some circumstances, more optimal versions of the concrete to parse grammar transformations

are applicable. The transformations

A-+ a++d
A-+a

becomes

become

A-+ X
X-+E

X-+Xa
x-xx

A-+ X
X-+ a
X-+Xda
X-+XdX

(abstract)
(enqueue)
(append)

(abstract)
(plural)
(plural)

are used in place of the standard transformations whenever possible. If any of the transformations

results in A-+ X being the only rule for A, that rule may be omitted, and A used in place of X.

This optimization is not applicable to delimited "*" sequences. The action• and data• mappings

must be adjusted for these optimizations.

A special LALR automaton ACTION table is constructed for P. This table differs from conventional

ones in that the ACTION mapping is defined not only on terminals, but on non-terminals as well.

So defined, this mapping subsumes the GOTO mapping entirely. With this alteration, the LALR

ACTION table can be used to recognize not only strings of the language, but also sentential forms.

Note that the inclusion of the X rules permits the recognition of a non-terminal representing a

sub-sequence at any point within a sequence. Without those rules, such non-terminals could only

be recognized at the beginnings of sequences.

The presence of the X rules in P make that grammar ambiguous. This ambiguity is resolved in

the construction of the ACTION table by treating X non-terminals somewhat like terminals. X

indicates only that the non-terminal X is acceptable in this position. It does not indicate that an

31

a such that X ~ a is also acceptable. Stated in the jargon of LALR parsing, in this context X

can be shifted, but not obtained via a reduction. With this restriction, an LALR ACTION table can

be constructed for P without changing the intended semantics of the X rules.

The LALR ACTION table is output. It can be used to parse a concrete phrasal form that derives

from any given non-terminal. All that is necessary is the start state for the non-terminal and

a terminal symbol in the non-terminal's follow set. Both of these are output for each concrete

non-terminal in Atop·

The sets :E, N, A, Achain 1 Nambig 1 and N are output.

The mappings 1j; n (Ahain X N), action•, and data• are output.

For each parse rule p E p•, lhs(p) and irhs(p)l are output.

4.4 Data Representation

The integers that represent the symbols and rules in the abstract and parse grammars are carefully

chosen to simplify Ladle table access. Since 1j; n (Atop x N) provides such a strong relationship

between the abstract non-terminals in N and the concrete/parse non-terminals in Atop, the cor

responding abstract and parse non-terminals in those sets are numbered identically. The concrete

non-terminals in A are ordered so as to map ~ onto<. The abstract rules for each abstract non

terminal are ordered with all rules in Pcyclic before all other rules. The abstract rules as a whole

are ordered by the order ori. their lhs's. The concrete states II.wb are numbered so that V1r E II, if

Contract(1r) E P, then 1r is numbered identically to Contract(1r), otherwise 1r is numbered 0. The

symbols and rules are indexed as follows:

The ignored lexemes are not indexed.

The non-constant screened lexemes are 1 through J(- 1.

The constant screened lexemes are J(through L - 1.

The constant preserved or omitted lexemes are L through V- 1.

The non-constant preserved or omitted lexemes are V through S- 1.

The non-terminals in N (or in Atop) are S through R- 1, with S (or Top(S)) first.

The non-terminals in A\Atop are R through A- 1.

The non-terminals in Achain \A are A through C- 1.

The non-terminals in N ambig \Achain are C through m.

The non-terminals in N•\Nambig are m + 1 through n.

The abstract grammar rules P are R through U - 1.

The parse grammar rules p• are 1 through r.

Figure 3 illustrates these numeric assignments. (U may or may not actually be less than C, m, or n,

but all of the other variables are ordered correctly.) Note that alllexemes, abstract non-terminals,

32

lv Is

Is I A I U I C m nl
abstract NTs (N) I abstract rules I

A I
abstracted parse NTs (Achain) I Nambig I

parse NTs (N•)

Figure 3: Integer assignment for the grammars

and abstract rules are assigned distinct values. They are collectively called operators. Each node

of a syntax tree IR has an operator that describes what the node represents.

J(, L, V, S, R, A, C, U, m, nand rare all included in Ladle's output. Note that the abstract

start symbol S and the concrete start symbol representative Top(S) are both numbered S.

For each abstract non-terminal, define first(X) as the index of the first rule with X as its lhs.

Define first(R)=U, where R and U are the indices defined earlier. The set of rules for each

abstract non-terminal X is thus represented by the set of integers [first(X),first(X + 1)[. first is

the representation of these sets used in the output.

Expand is represented by (lhs o Expand) n (P X P), (rhs o Expand) n (P X P), and (Contract o

Coerce'). For each abstract rule p E P, rhs(Expand(p)) may be parsed into lhs(Expand(p)) to yield

Expand(p). Using (Contract o Coerce'), this technique may be generalized from single abstract

rules to any non-null abstract derivation.

For each abstract rule p E P, a=lhs(Expand(p)) and A=rhs(Expand(p)) are output. Since 'lj)(A) =

lhs(p) and 'lj)(a) = rhs(p), A represents both lhs(P) and (lhs o Expand)(p), and a represents both

rhs(p) and (rhs o Expand)(p).

(Contract o Coerce') is completely represented by the order of the concrete non-terminals and the

abstract rules, since ~ is represented by < and each rule p E Pcyclic is represented by first(lhs(p)).

'ljJ n ((:E U Atop) x (tUN)) is represented by lw, so 'ljJ n ((:E U Achain) x (tUN)) is represented in

the output by 1f) n ((Achain \Atop) X if) only. The representation of 1f) n (Atop X N) represents Top

as well.

The action• and data• mappings output are modified to ignore implicit abstract rules and null

abstract derivations whenever possible, since the IR tree doesn't include them.

Bottom and (lhs o Expand) n (P X P) are represented by a single vector that includes lr;. This

vector maps each operator X E (t U N U P) onto a parse symbol X that can be derived, using

33

only trivial derivations, from the lhs of the expansion of the abstract derivation represented by any

syntax tree whose root operator is X. For all X E (tUN UP), lhs(Expand(.~Y)) ~ X, since
Iltrivia!

for all X E (i: u N), X is isomorphic to 0 x·

The names of lexemes, abstract non-terminals, and abstract rules are all combined in a single

vector. The sizes of lexemes and abstract non-terminals are gather together in the same vector as

the arities of abstract rules.

5 Client Interface

The Ladle client interface provides a simple means of accessing the output tables. In the interface,

the names symbol, non-terminal, NT, and role refer to the abstract grammar, unless otherwise

noted. Grammar symbols, rules, states, and so forth are represented by integers. No distinction is

made between the integer and what it represents.

5.1 Language Forms

(load-language language-name)

Load and return the Ladle tables for the language named language-name. There may be

optional extra parameters to this function that specify system dependent load arguments.

(~ith-languaga language
body)

Make language the current language while executing body. Many of the other forms and

functions use the current language.

(currant-language)
Return the current language, or false if there is none.

(language-nama)
Return the current language's name.

(language-top-operator)
Return the abstract and parse grammar start symbol S.

(do-operators (variable return-form)

body)
For each operator in the language, bind variable to the operator and execute body. The

return function may be used in the body as in all loops. Return the result of return-form.

or true if no return-form is given.

(do-laxemas (variable return-form)

body)

34

For each lexeme in the language, bind variable to the lexeme's operator and execute body. The

return function may be used in the body as in all loops. Return the result of return-form,

or true if no return-form is given.

(do-NTs (variable return-form)

body)
For each abstract non-terminal, bind variable to the non-terminal's operator and execute

body. The return function may be used in the body as in all loops. Return the result of

return-form, or true if no return-form is given.

5.2 Lexer Data Forms

initial-lex-state
The initial lex state and first argument to lex-action.

(lex-action lex-state character)

Return the lex action for the character when in the lex-state: False if an ignored lexeme

has been recognized, a lexeme if one that is not ignored has been recognized, the new state

otherwise. The le.'Ceme may be lexical-error-operator or eos-lexerne-operator. Note

that alexeme only specifies the lexical class; the characters recognized are not preserved here.

5.3 Parser Data Forms

(initial-state-for-parse-NT parse- NT)

The initial parse state and first argument to parse-action when parsing a phrasal form

derived from the parse-NT. It is an error for parse-NT f/: Atop·

(parse-action parse-state parse-symbol)

Return the LALR parse ACTION for the parse-symbol when in the parse-state: a new state

for shift, a parse rule for reduce, or false for error.

(follow-lexeme-for-parse-NT parse-NT)

Return any lexeme in the follow set of the parse-NT. It is an error for parse-NT f/: Atop·

(parse-rule-lhs parse-rule)

Return the parse non-terminal lhs(parse-rule).

(parse-rule-length parse-rule)

Return the length of the parse-rule.

(parse-rule-action parse-rule)

Return action•(parse-rule).

(parse-rule-data parse-rule)

35

Return data• (parse-role).

(disambiguate-parse-action parse-role parse-role-rhs-state-sequence)

Return the disambiguated action for the parse-role: a Contract state for mark or an abstract

rule for abstract. Parse-role-rhs-state-sequence contains the Contract states corresponding

to each symbol in the parse-role's rhs.

(parse-symbol-operator parse-symbol)
Return '1/J(parse-symboQ. Parse-symbol must be an element of (:E U Achain)·

(operator-parse-symbol operator)
Return lhs(Expand(operator)), where for all X E (:t u lV), X is isomorphic to 0 x·

(list-parse-NT-to-NT-rule-cycle from-parse-NT to-parse-NT)

Return the derivation Contract(Coerce'(from-parse-NT, to-parse-NT)) as a list of abstract

rules. This list may be destructively modified. It is an error if from-parse-NT or to-parse-NT

is not in A, or if '1/J(from-parse-NT) =P 1/J(to-parse-NT).

5.4 Generic Operator Forms

syntactic-error-operator

lexical-error-operator
eos-lexeme-operator

Each syntactic or lexical error is represented by the syntactic-error-operator or the

lexical-error-operator, respectively. Eos-lexeme-operator represents the end of the

lexical stream. It is returned by lex-action and expected by lalr-action. These operators

are collectively called the special operators.

(find-named-operator operator-name)
Return the integer assigned to the operator named operator-name, or false if there is no such

operator.

(operator-text operator)
Return the text for operator. It is an error for operator to be special. If operator is a constant

lexeme, the lexeme itself is returned. Otherwise, the name of the lexeme, non-terminal, or

rule is returned.

(operator-is-special? operator)
Return true if operator is special, false otherwise.

(operator-is-constant? operator)
Return false if operator is a non-constant lexeme, true otherwise.

(operator- is-screened? operator)
Return true if operator is a screened lexeme, false otherwise.

36

(operator-is-lexeme? operator)

Return true if operator is a lexeme or is special, false otherwise.

(operator-is-symbol? operator)

Return false if operator is a rule, true otherwise.

(operator-is-variable-arity? operator)

If operator is a delimited sequence, return the sequence's delimiter. If operator is the

syntactic-error-operator or an undelimited sequence, return syntactic-error-operator.

If the arity of operator is fixed (possibly zero), return nil.

5.5 Symbol Forms

(symbol-size symbol-operator)

For a non-terminal, return the number of characters in its name. For a constant lexeme,

return the number of characters in its representation. For non-constant lexemes, return 0. It

is an error if symbol-operator is a special operator.

(do-NT-rules (variable NT-operator return-form)

body)
For each abstract rule p for which lhs(p) = NT-operator, bind variable to the rule's operator

and execute body. The return function may be used in the body as in all loops. Return the

result of return-form, or true if no return-form is given.

(NT-bottom NT-operator)

Return Bottom(NT-operator).

5.6 Rule Forms

(rule-kind rule-operator)

Return the kind of abstract rule rule-operator.

(rule -lhs rule-operator)

Return lhs(Expand(p)), where 1/J(lhs(Expand(p))) = lhs(p) and abstract rule pis represented

by rule-operator.

(rule-ari ty rule-operator)

Return the arity of abstract rule rule-operator.

(do-rule-rhs-operators-and-child-indices ((symbol-var child-var) rule-operator return-form)

body)
Let a=rhs(Expand(p)), where 7/J(a) = rhs(p) and pis represented by rule-operator. For each

symbol in a, execute body with symbol-var bound to the symbol's operator and child-var

bound to the index of the

37

corresponding child specification in the ru1e's m tree template, or -1 if there is none. The

return function may be used in the body as in all loops. Return the resu1t of return-form,

or true if no return-form is given.

38

A Notation and Conventions

A.l Notation

Let S and T be sets.
Define S\T as the set difference of S and T.

Define ls : S- S as the identity mapping on S.

Let 5* denote the application of the Kleene star operator to S.

Define Su.bsets(S)={S'l S' ~ S}.

Use the notation 3!x ... to denote "there exists a unique x such that ... ".

Let f: D-C be a mapping.
Iff is invertible, define J-1 : C - D as the f inverse mapping.

Define the f image mapping f: Subsets(D) - Subsets(C) by

vs~ n, f(S)={f(d)jd E S}.

Define the f preimage mapping J-1 : Su.bsets(C)- Su.bsets(D) by

vs~ c, f- 1(S)={dlf(d) E S}.

Let the subsets D' ~ D and C' ~ C be given such that f(D') ~ C'.

Define the restriction mapping f n (D' x C') by

Vd ED', f n (D' X C')(d)=f(d).

The empty string is represented by e.

Let f : D - C be a mapping, where D and C are sets of symbol strings and e ~ D.

Extend f homomorphically to the mapping f: D* - C* by

f(af3)=f(a)f(f3) and f(e)=e.

A context-free grammar g is a tuple (N, :E, P, S), where N is the set of non-terminal symbols, :E is

the set of terminal symbols, P is a set of rewrite rules, and S E N is the initial symbol.

A rewrite rule in Pis written (.4.- a), where .4 EN and a E (:E UN)* .

.4 is the left-hand-side or lhs, and a is the right-hand-side or rhs.

A chain rule is any rule of the form (.4- B), where BEN. An empty rule is any rule of the form

(.4- e).

For any M ~ N, define P-.M ~ P by P-.M={(.4- a) E PIA~ M}.

a :! (3 denotes a derivation that rewrites a E (:E UN)* as (3 E (:E U N)* by applying a sequence rr
P'

of rewrite rules in P' ~ P.

39

In general, a derivation may be of any length, including zero.

For any grammar symbol A E (:E U N), define 0 A as the zero length derivation for which A ~ A.

A zero length derivation is also called a null derivation.

a => (3 denotes a derivation consisting of exactly one rule.

a ~ (3 denotes a derivation without naming it.

P' may actually be a set of derivations rather than of rules. If P' is not specified, P is assumed.

·when a ~ (3 and a E N, (3 is called a phrasal form. When a = S, (3 is called a sentential form.

Let (a ~ (3) and (8 * 1) be derivations such that (3 = ~8(, for some a, (3, 8, ~~' (E (:E UN)*.

Then (a ~1 ~I() is a concatenation of 1l"o and 11"t.

Note that there may be many ways to concatenate two derivations.

Let II0 and II1 be sets of derivations.

Define IIoii1 as the set of derivations that can be constructed by concatenating a derivation in II 0

with a derivation in II 1 •

Define II0 as the set of derivations that can be constructed by concatenating zero or more derivations

in II0 •

Define IIri as the set of derivations that can be constructed by concatenating one or more derivations

in ITo.

The mappings lhs: P* -+ N and rhs: P* -+ (:E UN)* are defined by

'1111" E P*, where A~ a, A E N, and a E (:E UN) •,

Let 11" E P* be a derivation and P' ~ P be a set of rules.

lhs(11")=A
rhs(11")=a.

Define the derivation 1!"\P' as the derivation 11" with all of the rules in P' removed.

Care must be exercised with this operation, as 11" \P' is not always actually a derivation.

For any grammar g = (N, :E, P, S), Lang(9) is the set of terminal strings that can be derived from

S using the rules in P.

A.2 Conventions

g is a context-free grammar.

A, B, C, and X are non-terminals.

p and q are rewrite rules.

a, (3, 1, 8, ~'and (are strings of terminals and non-terminals.

11" is a derivation.

40

.l is a symbol such that .l ft (:E U N).

All symbols relating to abstract grammars have hats on them; e.g. A, p, a, ft, and so forth.

Conversely, no symbol that does not relate to abstract grammars has a hat on it.

41

B Ladle in Ladle

LANGUAGE ladle

I* A Ladle description of the Ladle input syntax. *I

LEXICAL

Yhitespace = { \t\n\-L} => IGNORE;

comment = "/*" - "*/" => SCREEN;

string = "\'"' - "\"" ;

case_insensitive_string = ""' - "'"

char_set = "{" - "}" ;

index = "<" {0-9}+ ">"

identifier= {a-zA-Z}({_0-9a-zA-Z}*);

key_abstract = 'ABSTRACT' IN identifier;
key_annotate = 'ANNOTATE' IN identifier;
key_concrete = 'CONCRETE' IN identifier;
key_ignore = 'IGNORE' IN identifier;
key_implicit = 'IMPLICIT' IN identifier;
key_in = 'IN' IN identifier;
key_language = 'LANGUAGE' IN identifier;
key_lexical = 'LEXICAL' IN identifier;
key_omit = 'OMIT' IN identifier;
key_preserve = 'PRESERVE' IN identifier;
key_screen = 'SCREEN' IN identifier;
key_tree = 'TREE' IN identifier;

ABSTRACT

ladle_specification = 'LANGUAGE' identifier
'LEXICAL' lexical_definition_seq
'ABSTRACT' abstract_definition_seq
opt_concrete_section => TREE;

opt_concrete_section = ['CONCRETE' concrete_definition_seq]

42

-

lexical_definition_seq = lexical_definition* => TREE;

lexical_definition = identifier "="
lexical_expr lexical_disposition ";" =>TREE;

lexical_expr ++"I" = lexical_expr
lexical_expr ++

lexical_expr 11_11 string
string .. - .. string
any_string 'IN' identifier

lexical_expr "*"
lexical_expr "+"
"[" lexical_expr "]"
"(" lexical_expr ")"
string
case_insensitive_string
char_set

any_string = string
case_insensitive_string

lexical_disposition = =>

I "=>" 'IGNORE' =>

I "=>" 'SCREEN' =>

I "=>" 'OMIT' =>
I "=>" 'PRESERVE' =>

=> or
=> concatenate
=> match
=> balanced_match
=> lex_ in
=> lex_ star
=> lex_ plus
=> lex_ optional
=> ANNOTATE

l_default_disposition
l_ignore
l_screen
l_omit
l_preserve

rhs = grammar_symbol_seq "* 11

grammar_symbol_seq "+"
grammar_symbol_seq "++"

"[" grammar_symbol_seq
grammar_symbol_seq

opt_grammar_symbol => star
opt_grammar_symbol => plus
opt_grammar_symbol => plural

II] II

grammar_symbol_seq = grammar_symbol* => TREE;

opt_grammar_symbol = [grammar_symbol]

grammar_symbol = string
case_insensitive_string

identifier

43

=> optional

abstract_definition_seq = abstract_definition+ => TREE;

abstract_definition = identifier "=" abstract_rule_seq

abstract_rule_seq = abstract_rule + "I" =>TREE;

abstract_rule = rhs tree_template => TREE;

11.11

• => TREE;

tree_template =
"=>" 'IMPLICIT'

=> default_template
=> implicit_template

"=>" 'ANNOTATE' abstract_child => annotate_template
11 =>" 'ANNOTATE' => annotate_default_template
11 =>" identifier "(" abstract_child_seq ")" => general_template

"=>" identifier => named_ template
11 =>" 'TREE' => simple_template

abstract_child_seq = abstract_child * "," =>TREE;

abstract_child = grammar_symbol opt_index => TREE;

opt_index = [index] => TREE;

concrete_definition_seq = concrete_definition* => TREE;

concrete_definition = identifier "=" concrete_rule_seq

concrete_rule_seq = rhs + 11 1" =>TREE;

CONCRETE

lexical_expr = lexical_term_seq ++ "1 11

lexical_term_seq

lexical_term_seq = lexical_term++

lexical_term = lexical_factor "- 11 string
string 11

-
11 string

any_string 'IN' identifier
lexical_factor

44

11.11

• => TREE;

lexical_factor = lexical_primary 11 *11

lexical_primary 11 + 11

lexical_primary

lexical_primary = 11
(

11 lexical_expr 11
)

11

11
[

11 lexical_expr 11
]

11

string
case_insensitive_string
char_set

45

-

C Normalizing Extended Context-Free Grammars

The theory of expansion as described in Section 2 does not include the special sequence operators,

defined in Section 3.2. A context-free grammar containing these operators can be converted into

an equivalent context-free grammar without them by normalizing each of the its sequence rules.

For each normal transformation, let A EN, a E (:E UN)* such that lal :f. 0, and dE :E u {c} be

given. For each sequence rule, let a distinct X ~ :E be given. The transformations are:

becomes

A-+a+d becomes

A-+ a++d becomes

A-+ X
X-+a
X-+Xda

A-+ X
X-+ada
X-+Xda

Each new concrete non-terminal X defined by transforming a rule of a concrete grammar is mapped

by 'lj;0 onto the new abstract non-terminal X defined by transforming the similar rule in the corre

sponding abstract grammar.

46

